
Lesson Plan

Chris Diaz

This lesson plan provides an assortment of learning modules for teaching static
web technologies for digital scholarship and scholarly communications librari-
anship. Each topic includes a learning objective and recommended readings,
viewings, or tutorials for use in workshops or seminars.

Download PDF Download DOCX

Introduction
Learning Objective: Participants will be able to recognize the strengths and
limitations that static websites provide scholarly communications librarians.

Static websites can facilitate the distribution, access, and longevity of digital
scholarship. A static website is simply a set of files that exist somewhere on a
public web server. While they provide some benefits to librarians who facilitate
the dissemination and preservation of the scholarly record, they –by themselves–
are inadequate for satisfying the full range of scholarly communication technology
needs.

Benefits for Digital Scholarship

• Static websites support a variety of digital scholarship and schol-
arly communications use cases, including scholarly monographs, aca-
demic journals, digital exhibits, reproducible research, open educational
resources, data visualizations, and digital library projects.

• Static websites are built on open source software and open web
standards. There’s nothing proprietary to the underlying technologies.

• Static websites can be hosted anywhere, enabling the freedom to deploy
to (and migrate from) any hosting provider.

• Static websites rely on fewer pieces of technical infrastructure than
dynamic web platforms: no databases, no software updates, no server
maintenance, no security patches

• Static websites are cheaper to maintain and preserve than websites
run on content management systems

1



Challenges and Drawbacks

• Static websites are more difficult to learn because they don’t typically
include a content management system. Instead, they require direct inter-
action plain text files via a text editor and command line interface. Static
websites can be used with content management systems; however, this
usually requires additional configuration.

• They are more difficult to edit after the work is complete. For scholarly
publications and digital scholarship projects, frequent editing and updating
may not be a primary concern, but projects involving many content editors
with on-the-fly content updates may be better served by a publishing
platform with a content management system.

• They do not support “logged in” user experiences. Static websites are
easiest to make when they are public and read-only. Administrative
dashboards, analytics, submission management systems, and subscriber
content would need to be handled using other services.

• This is not unique to static websites; however, by taking on more control
over the semantic markup and styles by editing and developing templates,
you assume more responsibility over the usability and accessibility of the
website. Using “as-is,” warranty-free open source software requires an
added level of care over the quality of the code. For example, one cannot
assume that a popular open source theme for a static site generator meets
your institutions digital accessibility policies. It’s your responsibility to
test the website and make improvements accordingly.

Deciding to use a static website for a digital scholarship project requires a thor-
ough understanding of the project’s use cases. For example, while static websites
may be excellent options for digital exhibits and scholarly web publications, they
are not suitable alternatives for repository systems or pre-print servers.

Reading: Newson, Kaitlin. 2017. “Tools and Workflows for Collaborating on
Static Website Projects.” The Code4Lib Journal, no. 38 (October). .

Newson introduces static site generators for digital library projects with a case
study involving a digitized maps collection. Newsom explains how static site
generators work and discusses their advantages and disadvantages for team
projects.

Static vs Dynamic Websites
Learning Objective: After examining this topic, participants will be able to
describe the differences between static and dynamic websites.

Most of the websites we use every day are dynamic websites. Dynamic websites
store content in databases and use web servers to generate web pages upon
each visit. Often, dynamic websites are managed by a content management
system (CMS), like WordPress, Drupal, or Omeka. This make them attractive for

2

https://en.wikipedia.org/wiki/Plain_text
https://journal.code4lib.org/articles/12779
https://journal.code4lib.org/articles/12779
https://wordpress.org/
https://www.drupal.com/
https://omeka.org/


websites that require permissions-based access, e-commerce, or social interactions.
However, dynamic websites need continuing resources for software updates,
maintenance, and security.

Static websites do not use databases to store content or web servers to dynamically
generate web pages; instead, the web pages are pre-built on a personal computer
using a static site generator and stored as static HTML files on a public web
server, thereby eliminating the need for database security and routine software
updates for servers. This makes them cheaper to host and easier to maintain.

Static websites used to make up the majority of the web in the 1990’s. People
would write HTML code (i.e. “markup”) for every page and upload the files to a
public web server. Today, people use static site generators to automate and
simplify the process for making websites. “Think of a static site generator as a
script which takes in data, content and templates, processes them, and outputs a
folder full of all the resultant pages and assets” (Hawksworth, 2020). Compared
to dynamic website platforms, static site generators are relatively small pieces of
open source software we can run on our computers ourselves.

Tutorial:

Williamson, Evan. 2020. “Introduction to Creating Websites with GitHub Pages
and Jekyll.” Go-Go Gh-Pages! This is an excellent introduction to using GitHub
for static site publishing. From the website: “This workshop will introduce
using free hosting from GitHub Pages integrated with the popular static website
generator Jekyll. Along the way we will cover the basics of GitHub, HTML,
Markdown, and Jekyll. You will learn how to set up a project repository, write
content in Markdown, and publish your site, all using GitHub’s user friendly web
interface. More advanced usage of Jekyll for local web development is introduced
final section.” Follow along with the videos for the full workshop experience.

Static websites have gained in popularity in the open source web development
community with the rise of JAMstack. JAMstack is an architecture for building
websites using static site generators (of which there are hundreds of open source
options). JAMstack separates the front-end interface from the backend database
in order to produce websites that are less vulnerable to software degredation and
security risks. When publishing scholarly texts online, scholarly communications
librarians rarely need backend database features. We primarily need the front-end
to provide stable, unlimited online access to web publications.

Frontend Features Backend Features
Public HTML interface Server-rendered web pages
Metadata (JSON/HTML) Storing user credentials
Full-text PDF download Managing e-commerce transactions

Viewing: Watch at least first 6 minutes of “What is the JAMstack? and let’s
BUILD one”

3

https://www.netlify.com/blog/2020/04/14/what-is-a-static-site-generator-and-3-ways-to-find-the-best-one/
https://evanwill.github.io/go-go-ghpages-b/
https://evanwill.github.io/go-go-ghpages-b/
https://www.youtube.com/watch?v=moJgWrD6dwg
https://jamstack.org
https://jamstack.org/generators/
https://jamstack.org/generators/
https://youtu.be/Sh1i-gMH4bo
https://youtu.be/Sh1i-gMH4bo


Follow-up activity: Examine three publishing tools from the Catalogue in “Mind
the Gap: A Landscape Analysis of Open Source Publishing Tools and Platforms”
and make a case for why each tool is or is not an example of JAMstack in
scholarly communications.

Plain Text vs Rich Text
Learning Objective: Produce and transform plain-text documents for editing,
publishing, and archiving

Static site generators require content and styles to be stored as plain text. There
are two main types of documents we use to write and edit text: plain-text and
rich text. Most of us are trained to use rich text editors: emails, word documents,
content management systems. This is for good reason: they’re easy to use and we
need them for everyday things. Plain text exposes the raw, semantic characters
within a document, whereas rich text displays the formatting features and styles.
For librarians, plain text offers some advantages over rich text, as Tenen and
Wythoff (2014) explain:

Plain text both ensures transparency and answers the standards of
long-term preservation. [Microsoft] Word may go the way of Word
Perfect in the future, but plain text will always remain easy to
read, catalog, mine, and transform. Furthermore, plain text enables
easy and powerful versioning of the document, which is useful in
collaboration and organizing drafts. Your plain text files will be
accessible on cell phones, tablets, or, perhaps, on a low-powered
terminal in some remote library. Plain text is backwards compatible
and future-proof. Whatever software or hardware comes along next,
it will be able to understand your plain text files.

File Contents File Extensions Editors
Plain text .xml, .html, .md Notepad, TextEdit, Visual Studio Code
Rich text .docx, .rtf, .odt Microsoft Word, Scrivener

Coming to a plain text editor from a word processing program (like Microsoft
Word), might feel like writing computer code rather than text for humans. That
is because there is little material difference between plain text and code. Plain
text is the format software developers use to write code. The only differences
between code and text is the content and file extension. Plain text editors are
not exclusive to writing code or reading data; people can write fiction in plain
text (and some do).

Reading: Gil, Alex. 2015. “The User, the Learner and the Machines We
Make.” Minimal Computing: A Working Group of GO::DH. May 21, 2015. This
is the canonical essay on minimal computing in digital humanities. Minimal
computing centers around the question, “what do we need?” Scholarly communi-

4

https://mindthegap.pubpub.org/
https://mindthegap.pubpub.org/
https://en.wikipedia.org/wiki/Plain_text
https://en.wikipedia.org/wiki/Formatted_text
https://doi.org/10.46430/phen0041
https://en.wikipedia.org/wiki/WordPerfect
https://en.wikipedia.org/wiki/WordPerfect
https://en.wikipedia.org/wiki/Microsoft_Notepad
https://en.wikipedia.org/wiki/TextEdit
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Scrivener_(software)
https://ianhocking.com/twl/2013/06/22/writing-a-novel-using-markdown/
https://go-dh.github.io/mincomp/thoughts/2015/05/21/user-vs-learner/
https://go-dh.github.io/mincomp/thoughts/2015/05/21/user-vs-learner/


cations librarians need resources for publishing academic texts online in order
to be discovered and accessed by the public without restrictions. This can be
accomplished with an open source static site generator, basic web hosting, and
minimal maintenance costs. Importantly, the essay asks us to “displace [our]
reliance on ‘user friendly’ mechanisms,” like content management systems and
hosted platforms, for smaller technical infrastructures, like plain-text and static
websites, that are cheaper to sustain and easier to preserve.

Activity:

• Read “Getting Started with Markdown” to learn the basic syntax
• Write a markdown version of your resume/CV in a text editor (such as

Dillinger)
• Convert your resume/CV from markdown to HTML5 with Pandoc
• Save the HTML5 code to a file called resume-cv.html

Tutorials:

• Tenen, Dennis, and Grant Wythoff. 2014. “Sustainable Authorship in
Plain Text Using Pandoc and Markdown.” Programming Historian, March.
I strongly recommend some familiarity with Pandoc for roles or projects
involving digital publishing. It was developed with academic writing in mind
and is usually a behind-the-scenes piece of software within many digital
publishing tools. If you’d prefer not to install Pandoc on your machine, you
can use the Try Pandoc online tool to convert between plain-text formats.

• “Fundamentals: YAML & Markdown.” 2020. In Quire: Multiformat Book
Publishing. J. Paul Getty Trust, Los Angeles. This is a chapter from
the manual for Quire, a multiformat book publishing program, but it is an
excellent introduction to the fundamentals of Markdown and YAML in the
context of a static site generator for book publishing. The concepts covered
in the chapter are essential to using any static site generator.

Static Websites and Accessibility
Static site generators can be a good tool for learning about web accessibility.
They give you full control over the HTML templates and CSS styles. Most of
the time, the templates and styles are by a theme a theme. Themes are separate
components for static site generators that users make and publishing as open
source projects. Whether you are using a theme or creating your templates from
scratch, it is your responsibility to ensure that the resulting web publication can
be used by everyone.

From an authoring standpoint, plain text is a more accessible format than rich
text. Seo and McCurry (2019) study the accessibility of authoring tools for
scientific documents (i.e. documents that require math formulas, embedded
graphics, figures, and bibiliographic citations) and introduce the Accessible
RMarkdown Online Writer, a web-based authoring tool for blind and low-vision
writers of scientific content. Markdown, as an accessible authoring format, is a

5

https://doi.org/10.46430/phen0046
https://dillinger.io/
https://pandoc.org/try/
https://programminghistorian.org/en/lessons/sustainable-authorship-in-plain-text-using-pandoc-and-markdown
https://programminghistorian.org/en/lessons/sustainable-authorship-in-plain-text-using-pandoc-and-markdown
https://pandoc.org/
https://pandoc.org/try/
https://gettypubs.github.io/quire/guide/fundamentals/
http://dspace.calstate.edu/handle/10211.3/210398
http://www.arowtool.com/
http://www.arowtool.com/


semantically rich plain text format with a minimal syntax, support for LaTeX
math, and wide range of output formats: HTML, PDF, Microsoft Word, RTF,
EPUB, PowerPoint, etc.

Markdown is independent of static websites and static site generators. Markdown
can be use in content management systems and dynamic website platforms, too.
Regardless of your web technology stack, distributing multiple formats of your
content to your audience, such as Markdown in addition to HTML or PDF,
provides choice for people to access your work. With static site generators –and
web-hosted git repositories– distributing the Markdown source of works is trivial.

Readings:

• “What Is Accessibility?” n.d. MDN Web Docs. Accessed December 3,
2020.

• “HTML: A Good Basis for Accessibility.” n.d. MDN Web Docs. Accessed
December 3, 2020.

• Seo, Joo Young, and Sean McCurry. 2019. “LaTeX Is NOT Easy: Creating
Accessible Scientific Documents with R Markdown.” Journal on Technology
and Persons with Disabilities 7 (16).

Recommending Viewing: Initiative (WAI), W3C Web Accessibility.
2020. “Web Accessibility Perspectives: Explore the Impact and Benefits
for Everyone.” Web Accessibility Initiative (WAI). December 3, 2020.
https://www.w3.org/WAI/perspective-videos/.

Activity

1. Using Chrome Developer Tools, visit a website and perform an accessibility
audit.

2. With the same website, use WAVE to perform an accessibility audit.
3. What were the differences between each tool’s evaluations?

Static Websites in Context
Learning Objective: Recommend static site generators options to students
and faculty in various disciplines.

Popular Static Site Generators

All static site generators have a similar workflow: (1) install the software, (2)
add your content, (3) run the build or serve command from your terminal, (4)
upload the files to a server. That said, some static site generators are easier
to use than others. In my experience with open source, the popularity of the
tool correlates with its easy of use. Here’s a very incomplete overview of some
popular static site generators.

6

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML
http://dspace.calstate.edu/handle/10211.3/210398
http://dspace.calstate.edu/handle/10211.3/210398
https://developers.google.com/web/tools/chrome-devtools/accessibility/reference
https://wave.webaim.org/


Jekyll If modern static site generators were a band, Jekyll would be a founding
member. It was designed as a blogging system for developers that grew into a
more general-purpose website builder over time. For a while, it was the easiest
static site generator to use on the GitHub Pages hosting service. This made it an
obvious choice for scores of personal blogs, portfolios, documentation websites,
and research projects.

Jekyll is written in Ruby. You don’t need to know anything about Ruby to use
Jekyll, but you do need Ruby and Bundler, a Ruby package manager, installed
on your computer in order to use it. This is a big hurdle for installing and using
Jekyll on Windows (it can be done). Luckily, there are some resources available
to help you make a Jekyll website without installing Jekyll on your computer (a
more complete list can be found here).

• Jekyll Now is a tutorial that teaches you how to create a blog “in 30
seconds” through the GitHub web interface. If you ever need a quick and
easy place to host your CV or porfolio, Jekyll Now is probably the easiest
option available.

• Collection Builder is a Jekyll-based or GitHub-based workflow for creating
digital collection and exhibit websites following collections as data principles.
The GitHub Pages version can used without installing Jekyll on your
machine. Websites with Collection Builder can be made with a spreadsheet
of metadata, a folder of images, and a configuration file. Many of the
digital collections from the University of Idaho were made with Collection
Builder.

• Wax is a Jekyll theme and digital production toolset for making digital
exhibits with an interoperable IIIF image viewer. Wax requires Jekyll
installed on your computer, but Wax provides everything necessary for
transforming a spreadsheet of metadata and folder of images into a digital
exhibition website. Visit the documentation to view examples.

Hugo Hugo is a newer static site generator. It was designed for scale and
flexibility in order to support any type of website. It is written in the Go
programming language, but –like Jekyll– programming knowledge or experience
is not necessary unless you need to modify or develop themes or templates. Hugo
is known for its speed. Static websites are usually built entirely at once, where
as dynamic websites can build pages as needed. When you’re working with large
static sites, the build time can minutes, which can slow down the development
process. Hugo is able to build a website with thousands of pages in seconds –
if not milliseconds – while another static site generator might take minutes. I
recommend Hugo because it’s easy to install and works with a lot of themes.

• Quire is a multiformat book publishing tool by the Getty. It uses Hugo
as an underlying static site generator for building the web versions of
academic books and museum catalogs. Quire also makes EPUB, PDF, and

7

https://jekyllrb.com/
https://pages.github.com/
https://www.ctrl-shift.org/
https://www.ruby-lang.org/en/
https://bundler.io/
https://jamstack.org/generators/
http://www.jekyllnow.com/
https://github.com/
https://collectionbuilder.github.io/
https://collectionsasdata.github.io/
https://collectionbuilder.github.io/gh/
https://www.lib.uidaho.edu/digital/
https://minicomp.github.io/wax/
https://iiif.io/
https://minicomp.github.io/wiki/wax/examples/
https://gohugo.io/
https://golang.org/
https://gohugo.io/getting-started/installing/
https://themes.gohugo.io/
https://gettypubs.github.io/quire/
http://www.getty.edu/publications


Mobi/Kindle files as output formats for the books from Markdown and
YAML content. Here’s a list of books made with Quire.

• Blogdown is a method of making static websites that contain reproducible
data analysis, tables, figures, graphics, and other forms of scientific content
generated with the R programming language. This can be an especially
useful –and perhaps familiar– option for anyone using R for statistical
computing in the sciences and social sciences. Like Quire, Blogdown uses
Hugo as an underlying software program for generating the static website
files.

• Wowchemy is an open source suite of Hugo website themes and features
for educational, personal, and group websites. They provide a variety of
templates and guides for new users.

Recommendations for Math

Static websites can render mathematical equations in the web browser using
MathJax. MathJax can be added to any website by adding a line or two to
the <head> element in the HTML template (see: instructions). MathJax is a
popular feature included in themes for static site generators focused on academic
or technical content. For more specialized cases, these open source projects
produce static websites for mathematical content.

• Bookdown, like Blogdown, was developed for users of the R programming
language. Unlike Blogdown, Bookdown does not use Hugo for statis site
generation, but it does generate static files for website, PDF, EPUB, LaTeX,
and Microsoft Word versions of books. This is a popular tool for books on
statistics, data science, and R programming.

The following projects do not use Markdown as an input format.

• LaTeXML is a LaTeX to HTML converter. This was used to create the
Digital Library of Mathematical Functions of the National Institute of
Standards and Technology. This is a great recommendation for scholars
who prefer wrtiting in LaTeX or TeX than Markdown. Given that, it relies
on a lot more software to process mathematics, TeX environments, macros,
and PostScript graphics than a modern static site generator.

• PreTeXt is an XML scheme for research articles, textbooks, and mono-
graphs. PreTeXt can create websites, PDFs, EPUB, and Jupyter Notebook
documents from XML using XLST. It’s currently used to make open
mathematics textbooks.

Open Infrastructure for Scholarly Communications
Learning Objective: After examining this topic, participants will be able to
identify challenges and take action toward developing and sustaining an open
infrastructure for scholarly communications.

8

https://www.getty.edu/publications/digital/digitalpubs.html
https://bookdown.org/yihui/blogdown/
https://www.r-project.org/
https://wowchemy.com/
https://wowchemy.com/templates/
https://wowchemy.com/templates/
https://wowchemy.com/docs/
https://www.mathjax.org/
https://www.mathjax.org/#gettingstarted
https://www.bookdown.org/
https://dlmf.nist.gov/LaTeXML/
https://www.latex-project.org/
https://dlmf.nist.gov/
https://www.nist.gov/
https://www.nist.gov/
https://www.latex-project.org/
https://tug.org/
https://pretextbook.org/
https://pretextbook.org/gallery.html
https://pretextbook.org/gallery.html


The acquisitions of the Social Science Research Network (SSRN) and bepress by
Elsevier revealed a “need for community-based scholarly communication infras-
tructure” by many within the academic library community. SSRN is preprint
repository for social sciences and humanities research. Bepress began as an open
access, academic journal publishing platform provider and eventually expanded
its product list to include a hosted institutional repository platform. Both
SSRN and bepress provide scholars with open access alternatives to exlusively
publishing their work in subscription-access journals. Hundreds of academic
libraries around the world subscribed to bepress products to support their schol-
arly communications iniatives. For academic library customers, the news of the
bepress acquisition in particular meant that their primary vehicle for open access
publishing was now owned by one of the largest commercial scientific journal
publishers in the world.

This led to the “2.5% Commitment,” a famous call to action by David W. Lewis,
Dean of the IUPUI University Library at the time. In it, Lewis urges libraries
to contribute 2.5% of its total budget to “support the common infrastructure
needed to create the open scholarly commons. . . Collectively we would take
responsibility for curating and preserving the world’s scientific, scholarly, and
cultural heritage thus making it discoverable and freely available to everyone in
the world now and in the future” Lewis, 2017. Open source software is a key
example of the types of contributions academic libraries can make toward this
goal.

Readings:

• “Elsevier Acquisition Highlights the Need for Community-Based Scholarly
Communication Infrastructure.” 2017. SPARC. September 6, 2017.

• Lewis, David W. 2017. “The 2.5% Commitment.” Working Paper.
https://doi.org/10.7912/C2JD29.

• Skinner, Katherine. July 23, 2019. “Why Are So Many Scholarly Commu-
nication Infrastructure Providers Running a Red Queen’s Race?.” Educopia
Institute.

Discussion Questions:

• Are static website technologies examples of open infrastructure for scholarly
communication?

• In what ways do static websites address or complicate the impediments to
sustaining scholarly communication resources Skinner (2019) outlines?

Community Engagement

There are several vibrant communities working in library, cultural heritage, and
scholarly communication technologies who share the values of community-driven,
open infrastructure. Here are a few for scholarly communications and digital
scholarship librarians to begin following and contributing to this work:

9

https://www.ssrn.com/index.cfm/en/
http://bepress.com/
https://www.elsevier.com/
https://sparcopen.org/news/2017/elsevier-acquisition-highlights-the-need-for-community-based-scholarly-communication-infrastructure/
https://sparcopen.org/news/2017/elsevier-acquisition-highlights-the-need-for-community-based-scholarly-communication-infrastructure/
https://en.wikipedia.org/wiki/Institutional_repository
http://ulib.iupui.edu/
https://scholarworks.iupui.edu/handle/1805/14063
https://sparcopen.org/news/2017/elsevier-acquisition-highlights-the-need-for-community-based-scholarly-communication-infrastructure/
https://sparcopen.org/news/2017/elsevier-acquisition-highlights-the-need-for-community-based-scholarly-communication-infrastructure/
https://doi.org/10.7912/C2JD29
https://educopia.org/red-queens-race/
https://educopia.org/red-queens-race/


• Invest in Open Infrastructure is “is an initiative dedicated to improving
funding and resourcing for open technologies and systems supporting
research and scholarship.”

• Code4Lib is a volunteer network of people working in –or adjacent to–
library technology.

• Library Publishing Coalition is “an independent, community-led member-
ship association of academic and research libraries and library consortia
engaged in scholarly publishing.”

Copyright 2020 Chris Diaz. This work is part of Static Web Publishing for
Digital Scholarship and is licensed under a Creative Commons Attribution 4.0
International License.

10

https://investinopen.org/community/
https://code4lib.org/about/
https://librarypublishing.org/
https://chrisdaaz.github.io/
https://chrisdaaz.github.io/static-web-scholcomm
https://chrisdaaz.github.io/static-web-scholcomm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Benefits for Digital Scholarship
	Challenges and Drawbacks

	Static vs Dynamic Websites
	Plain Text vs Rich Text
	Static Websites and Accessibility
	Static Websites in Context
	Popular Static Site Generators
	Recommendations for Math

	Open Infrastructure for Scholarly Communications
	Community Engagement


